CREATING VALUE FOR THE WORLD

DOOSAN STEAM GENERATORS

Doosan Heavy Industries & Construction
Steam generators of Doosan are already in operation around the world, showing off its superior performance. Doosan’s advanced technology has resulted in the development of high-efficiency steam generators that are better for the environment, raising customer value and customer satisfaction. Along with the superior combustion technology from Doosan Babcock, customer trust for Doosan is growing unlimitedly.
CONTENTS

INTRODUCTION ... 04

SOLUTIONS
- ONCE THROUGH SUPERCritical 06
- Posiflow™ STEAM GENERATOR 07
- DOWNSHOT STEAM GENERATOR 08
- NATURAL CIRCULATION STEAM GENERATOR 09
- INTEGRATED LOW EMISSIONS APPROACH 10
- CIRCULATING FLUIDIZED BED(CFB)BOILER 11
- SOLIDS SEPARATOR INTEGRATED WITH FURNACE 12
- INTREX™ SYSTEM DESIGNS 12

MANUFACTURING .. 13
EXPERIENCES .. 14
QUALITY ASSURANCE 22
INTRODUCTION
Doosan is Korea’s sole supplier of utility and industrial power boilers for both domestic and overseas markets. Over the past two decades, we have served as an EPC contractor or equipment supplier with a long list of references in thermal plants. We continue to set new records in terms of cost-effectiveness, cycle time, efficiency, reliability, and emissions.

Ever since our first utility boiler of 560 MWe class in 1978, we have won numerous orders for thermal power projects totaling in excess of 47,854 MWe in Korea, Chile, Thailand, Indonesia, Libya, Taiwan, Malaysia, Australia, the United States, Saudi Arabia, India, and other markets. Specializing in drum and once through boilers of up to 870 MWe as well as Circulating Fluidized Bed (CFB) units of up to 340 MWe, we design and manufacture a full range of subcritical and supercritical boilers that are designed to burn coal, oil, or gas efficiently.

Doosan Heavy merged Mitsui Babcock and established Doosan Babcock in Dec, 2006. Doosan Babcock has supplied boilers to over 30 countries including the U.S, Brazil and China as well as Europe, and has a license agreement with Harbin Boiler, the largest boiler maker in China and producer of 26,000MW of boilers to date.
DOOSAN has provided a number of innovative technology solutions available to customers and integrated advanced field-proven design features into our steam generators technology for their power generation asset base. Many of these are exclusive to DOOSAN. DOOSAN offers innovative, intimately crafted and proven reliability to our customers.

Once Through Supercritical

DOOSAN has developed world class capabilities in clean coal power plant technology and we fully understand our customers’ legislative requirements obligation to meet emissions targets. We have invested significantly in developing our once through supercritical technology to address issues of improving plant efficiency and are globally acknowledged as a leader in the design, manufacture and supply of once through supercritical boilers.

DOOSAN has been supplying once through Benson type boilers since the 1950s. Over the years we have proved that we have the ability to utilize our world-class technology. Our technology has continued to develop and change to keep pace with changing markets and customer needs.

The once through boiler is the only type that can be used to operate at supercritical pressures and is, therefore, crucially important for more modern high efficiency, lower emission power plants. DOOSAN supplies both the ‘conventional’ spiral wound furnace and the modern vertical Posiflow™ furnace once through designs.
Posiflow™ (Vertical Tube Low Mass Flux) Steam Generator

The Posiflow™ steam generator has a lower capital cost and is also more efficient than conventional steam generator technology. DOOSAN has been pioneering crucial developments in once through boiler design for more than 50 years. We have globally recognized expertise in the design and manufacture of once through supercritical technology using our proprietary Posiflow™ system with internally ribbed boiler tube technology. Along with our vision partners, DOOSAN has propelled once through steam generator technology forward, with the single most important innovative step since the once through Benson concept was first proposed.

By reducing mass flux levels to below 1,200 kg/m²s / 884,805.8 lbs/ft²h, Posiflow™ steam generators minimize furnace dynamic pressure losses and the thermo-hydraulic behavior of the furnace becomes similar to that exhibited by Natural circulation steam generators. The use of optimized internally ribbed tubing is a key ingredient in the success of these designs.

DOOSAN offers Posiflow™ technology in both once through supercritical wall fired and once through downshot fired steam generators. The vertical orientation of the furnace tubes simplifies the structural support system and reduces manufacturing and installation times. In addition, with furnace pressure losses only 30% of an equivalent high mass flux design, due to significant feed pump power saving, DOOSAN Posiflow™ steam generators represent the best available once through technology.

Features:
- Utilizes optimized “ribbed” tubing
- Provides Positive Flow characteristics
 - Flow in boiler tubes automatically increases with increasing heat flux
 - Stable self compensating system
- Can be applied to sub or supercritical steam generators
- Suitable for wall, tangential and downshot firing steam generator configurations

Benefits:
- Suitable for both steam generator retrofit and new build
- Lower Capital & Through Life Costs
 - Lower consumed feed pump power resulting in higher overall power plant efficiency
 - Lower construction costs
- Conventional structural support system
 (with no need for steam generator support straps)
DOOSAN STEAM GENERATORS

SOLUTIONS

Downshot Steam Generator for Low Volatile Anthracite Fuels

At DOOSAN, we apply our knowledge and experience to help plant operators and owners get the most out of their assets. Often this involves maximizing the use of local fuels, even ones with challenging characteristics. Our unique resources enable us to develop advanced downshot steam generators to support the firing of low volatile coals and anthracites with volatilities as low as 1-2% dmmf (dry mineral matter free) and ash weights of up to 45%.

Low volatile anthracite coals present particular combustion challenges in terms of achieving low unburned carbon levels, good ignition, flame stabilization and minimum load without oil support firing. DOOSAN has a unique furnace and burner technology that integrates the furnace into the combustion process. The features inherent in DOOSAN downshot firing furnaces are specifically designed to achieve optimum combustion conditions.

We offer both natural circulation and once through supercritical downshot steam generator designs.

DOOSAN has supplied over 10,000 MWe of this type of steam generator in locations as diverse as Mount Isa, Australia and Pha Lai, Vietnam. Pha Lai is Vietnam's first large coal fired power station and also burns the lowest volatile anthracite, in a wall-fired unit, in the world.
Natural Circulation Steam Generator

DOOSAN is the world's leading specialist in the design and engineering of the products required to generate steam generating products. We have particular expertise in manufacturing high temperature natural circulation boilers.

DOOSAN's extensive world wide experience of designing, manufacturing and installing natural circulation boilers includes over 66,000 MW of coal fired units and over 33,000 MW of oil and gas fired units. Currently unit sizes offered are from 250MW upwards generally for the electricity supply industry to fire a range of coals, oil, gas or a combination of these three fuels.

Natural Circulation Boilers utilize the naturally occurring difference between the density of water and the density of steam to provide the motive force to ensure fluid circulation within the furnace tubes. Key advantages of this method of circulation include the fact that a circulation pump is not required, and that it is inherently safe and self compensating because any additional heat absorption results in additional circulating flow.
Integrated Low Emissions Approach

Our emissions control solutions enable us to help our utility customers meet their individual emissions requirements. Our knowledge and experience of the emissions from fossil fired utility steam generators and the impact of the various control technologies available, give us an excellent advantage in the specification and supply of Air Quality Control Systems (AQCS).

We have the world’s largest multi-fuel burner test facilities, which enables us to offer a wide range of solutions for the control of combustion-related NOx emissions. These include Advanced Low NOx Burners, Separated Over Fire Air (SOFA), Boosted Over Fire Air (BOFA), and Selective Catalytic Reduction (SCR) control technologies.
Circulating Fluidized Bed (CFB) Boiler

Its Applications...
The CFB system is well suited for power plants with capacity of 60 to 1,000 MWth using single combustor.

... and its advantages

Fuel flexibility
CFB firing systems can burn low-quality fuel with high ash and sulfur contents. In particular, fuels which are either difficult to burn or cannot be burnt at all in conventional boiler may lend themselves well to CFB system.

High combustion efficiency
High carbon burnout can be achieved due to intimate gas/solids mixing and the long retention time of the fuel in the circulating fluidized bed.

Low SOx emissions
Desulfurization is accomplished in the combustion zone itself by the addition of small quantities of limestone.

Low NOx emissions
Low combustion temperature in combustion with staged combustion, a typical Feature of the CFB process maintains low NOx emissions.

CFB Process Diagram

Note: Licensed by Foster Wheeler
SOLUTIONS

Solids Separator Integrated with Furnace

The solids captured in the separator are recirculated through a non-mechanical sealing device back to the combustion chamber.

The advantages of the Solids Separator are:
- Small space requirements
- Maintenance and availability problems due to furnace/cyclone expansion joints eliminated
- Thin refractory anchored with dense studding

INTREX™ System Designs

Use of the Integrated Fluidized Bed Heat Exchanger (INTREX) in the CFB design is a unique technique which distinguishes it from other CFB boilers.

The advantages of the INTREX are:
- Heat exchange from solid bed material to tube surface
- High heat transfer rate
- Heat transfer controlled with fluidization
- Simple Design (No moving parts: no wear)
- Resistant to Erosion (Low fluidization velocities, fine particles)
- Resistant to Corrosion (Cl-free environment)
MANUFACTURING

Boiler Production History and Capacity Securing Plan

<table>
<thead>
<tr>
<th>Item</th>
<th>Capacity (MW/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coil (Element)</td>
<td>3,400</td>
</tr>
<tr>
<td>Panel</td>
<td>4,000</td>
</tr>
<tr>
<td>Header</td>
<td>3,500</td>
</tr>
<tr>
<td>Pipe (Link)</td>
<td>4,000</td>
</tr>
</tbody>
</table>

- **1,700MW** (2003)
- **2,750MW** (2004)
- **3,500MW** (2004-2008)
- **6,000MW** (2009)
- **8,500MW** (2014)

- Vietnam Factory: Add 500MW/Year from 2009 to 2014
- New Investment in Changwon Factory: Add 2,000MW in 2009
EXPERIENCES
Samchunpo #1,2,3,4 4 x 560 MWe Power Plant Project /by DOOSAN(*)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Korea Electric Power Co.(KEPCO), Korea</td>
</tr>
<tr>
<td>Location</td>
<td>Samchunpo, Korea</td>
</tr>
<tr>
<td>Type</td>
<td>4 x 500 MWe Controlled Circulation (Drum) Tangential Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>1,796 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>178 kg/cm²</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
</tbody>
</table>

GHECO ONE 1 x 700 MWe Power Plant Project /by DOOSAN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>GHECO ONE, Thailand</td>
</tr>
<tr>
<td>Location</td>
<td>Rayong City, Thailand</td>
</tr>
<tr>
<td>Type</td>
<td>1 x 700 MWe Once Through Supercritical Wall Fired Boiler (POSIFLOW™)</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>2,148 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>255 kg/cm²</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>569 °C / 1,056 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>569 °C / 1,056 °F</td>
</tr>
</tbody>
</table>

* Licensed by ALSTOM
Younghung #3,4 2 x 870 MWe Supercritical Power Plant

- **Client**: Korea Southern Power Co. (KOSEP), Korea
- **Location**: Younghung, Korea
- **Type**: 2 x 870 MWe Once Through Supercritical Tangential Fired Boiler
- **Main Steam Flow @ BMCR**: 2,637 tons/hr
- **Superheater Outlet Pressure**: 255 kg/cm²
- **Superheater Outlet Temperature**: 569 °C / 1,056 °F
- **Reheater Outlet Temperature**: 596 °C / 1,105 °F

Hadong #7,8 2 x 500 MWe EPC Supercritical Power Plant Project

- **Client**: Korea Southern Power Co. (KOSEP), Korea
- **Location**: Hadong, Korea
- **Type**: 2 x 500 MWe Once Through Supercritical Tangential Fired Boiler
- **Main Steam Flow @ BMCR**: 1,605 tons/hr
- **Superheater Outlet Pressure**: 255 kg/cm²
- **Superheater Outlet Temperature**: 569 °C / 1,056 °F
- **Reheater Outlet Temperature**: 596 °C / 1,105 °F

Licensed by ALSTOM
Sipat Stage-I 3 x 660 MWe Supercritical Power Plant

<table>
<thead>
<tr>
<th>Client</th>
<th>National Thermal Power Co.(NTPC), India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Sipat, India</td>
</tr>
<tr>
<td>Type</td>
<td>3 x 660 MWe Once Through Supercritical Tangential Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>2,225 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>255 kg/cm²g</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>540 °C / 1,004 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>568 °C / 1,054 °F</td>
</tr>
</tbody>
</table>

Ultra Mega Power Project 5 x 830 MWe Supercritical Power Plant

<table>
<thead>
<tr>
<th>Client</th>
<th>TATA Power Company Limited, India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Gujarat, India</td>
</tr>
<tr>
<td>Type</td>
<td>5 x 830 MWe Once Through Supercritical Tangential Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>2,526 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>256 kg/cm²g</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>569 °C / 1,056 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>594 °C / 1,101 °F</td>
</tr>
</tbody>
</table>

* Licensed by ALSTOM
Tonghae 2 x 200 MWe Power Plant Project
/by DOOSAN(*)

<table>
<thead>
<tr>
<th>Client</th>
<th>Korea Electric Power Co.(KEPCO), Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Tonghae, Korea</td>
</tr>
<tr>
<td>Type</td>
<td>2 x 200 MWe CFB Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>694 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>176 kg/cm²g</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
</tbody>
</table>

Yosu 1 x 340 MWe CFB Power Plant Project
/by DOOSAN(**)

<table>
<thead>
<tr>
<th>Client</th>
<th>KOSEP, Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Yosu, Korea</td>
</tr>
<tr>
<td>Type</td>
<td>1 x 340 MWe CFB Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>1,025 tons/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>171.5 kg/cm²g</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
</tbody>
</table>

* Licensed by ALSTOM
**Licensed by Foster Wheeler
Changshu 3 x 600 MWe Supercritical Power Plant

<table>
<thead>
<tr>
<th>Client</th>
<th>China Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Jiangsu Province, PRC</td>
</tr>
<tr>
<td>Type</td>
<td>3 x 600 MWe Once Through Supercritical Wall Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>542.278 kg/s / 4,299,015 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>24.80 MPa(a) / 3,684 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>543 °C / 1,009 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>571 °C / 1,056 °F</td>
</tr>
</tbody>
</table>

Wangqu 2 x 600 MWe Supercritical Power Plant

<table>
<thead>
<tr>
<th>Client</th>
<th>Shanxi Lujin Wangqu Power Gen Co., Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Shanxi Province, PRC</td>
</tr>
<tr>
<td>Type</td>
<td>2 x 600 MWe Once Through Supercritical Wall Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>540.185 kg/s / 4,188,784 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>24.80 MPa(a) / 3,684 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>571 °C / 1,060 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>569 °C / 1,056 °F</td>
</tr>
</tbody>
</table>
Drax 6 x 600 MWe Power Plant

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Central Electricity Generating Board (CEGB)</td>
</tr>
<tr>
<td>Location</td>
<td>North Yorkshire, United Kingdom</td>
</tr>
<tr>
<td>Type</td>
<td>6 x 600 Mwe Natural Circulation (Drum) Wall Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>562.222 kg/s / 4,462,157 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>16.90 MPa(a) / 2,451 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>568 °C / 1,054 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>568 °C / 1,054 °F</td>
</tr>
</tbody>
</table>

Pha Lai 2 x 300 MWe Downshot-Firing Power Plant Units

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Electricite de Vietnam (EVN)</td>
</tr>
<tr>
<td>Location</td>
<td>Pha Lai, Hai Duong Provinces, Vietnam</td>
</tr>
<tr>
<td>Type</td>
<td>2 x 300 MWe Natural Circulation Downshot Firing Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>234 kg/s / 2,032,662 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>17.07 MPa(a) / 2,538 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>541 °C / 1,006 °F</td>
</tr>
</tbody>
</table>
Yaomeng 1 x 300 MWe Vertical Tube (Posiflow™) Power Plant Unit

<table>
<thead>
<tr>
<th>Client</th>
<th>Yaomeng Power Generation Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Henan Province, PRC</td>
</tr>
<tr>
<td>Type</td>
<td>1 x 300 MWe Once Through Posiflow™ Wall Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>263.9 kg/s / 2,094,392 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>18.65 MPa(a) / 2,495 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>545 °C / 1,013 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>545 °C / 1,013 °F</td>
</tr>
</tbody>
</table>

Hemweg 1 x 650 MWe Supercritical Power Plant Unit

<table>
<thead>
<tr>
<th>Client</th>
<th>IVO now NUON Power Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Type</td>
<td>1 x 650 MWe Once Through Supercritical Wall Fired Boiler</td>
</tr>
<tr>
<td>Main Steam Flow @ BMCR</td>
<td>550 kg/s / 4,365,153 lbs/hr</td>
</tr>
<tr>
<td>Superheater Outlet Pressure</td>
<td>26.0 MPa(a) / 3,844 PSI</td>
</tr>
<tr>
<td>Superheater Outlet Temperature</td>
<td>540 °C / 1,004 °F</td>
</tr>
<tr>
<td>Reheater Outlet Temperature</td>
<td>568 °C / 1,054 °F</td>
</tr>
</tbody>
</table>

*Licensed by ALSTOM
**Licensed by Foster Wheeler
DOOSAN is dedicated to produce equipment which meets or exceeds applicable codes, standards and customer specific demands. DOOSAN is well equipped with X-ray generator, magnetic particle examination equipment, pressure testing equipment, wear tester and emission spectrometer. DOOSAN also carries out chemical analysis, physical, physical test, precision measurement, electrical measurement, non-destructive examination and material analysis.

As a strong testimony to its outstanding quality control system, DOOSAN was awarded with ISO 9001 and ISO 14001 certification for all its power generation facilities and industrial plants. In addition, DOOSAN has received main certificates of authorization from the American Society of Mechanical Engineers to use the applicable ASME code symbol stamp for various types of manufacture.
GLOBAL NETWORK

Overseas Branches

DOOSAN HEAVY INDUSTRIES
AMERICA CORP.
Parkway Plaza, 10th Floor
400 Kyebi Street
Fort Lee, NJ 07024, U.S.A.
Tel 1-201-944-4554
Fax 1-201-944-5022, 5053

NEW JERSEY OFFICE
Parkway Plaza, 10th Floor
400 Kyebi Street
Fort Lee, NJ 07024, U.S.A.
Tel 1-201-944-4554
Fax 1-201-944-5022, 5053

PITTSGURGH OFFICE
C/O Westinghouse Electric
Company Room 2X18,
Building F
P.O. Box 158
1-201-944-4554
Fax 1-518-385-4984

SCHENECTADY OFFICE
General Electric Building 33, Room 202A
One River Road
Schenectady, NY 12345, U.S.A.
Tel 1-518-385-4984
Fax 1-518-385-4984

WINDSOR OFFICE
20 International Drive
Windsor, CT 06095, U.S.A.
Tel 1-860-731-6478
Fax 1-860-731-6478

OVERSEAS BRANCHES

BEIJING OFFICE
Gateway Plaza, Tower B, 19th Floor
No. 18 Xiangguang, North Road,
East Third Ring, Chaoyang District,
Beijing 100027, China
Tel 86-10-6447-7131, 7133
Fax 86-10-6466-7139

HANOI OFFICE
Daehi Business Center, #1101
360 Kim Ma Street
Ba Dinh District, Hanoi, Vietnam
Tel 84-4-823-2501, 5
Fax 84-4-843-2302

HYDERABAD OFFICE
White House, #119, Block 3
6-3-1192/11, Kundan Bagh
 Begumpet
Hyderabad 500 016, India
Tel 91-40-6613-2447
Fax 91-40-6613-2447

KOLKATA OFFICE
Trinity Building, 3G
226/1 A/C Bose Road
Kolkata 700 012, India
Tel 91-33-2289-0576
Fax 91-33-2289-0576

MUMBAI OFFICE
Made Chambers-V, 1109-1110
Nariman Point, Mumbai 400 021,
India
Tel 91-22-2202-6504
Fax 91-22-2202-6557

NEW DELHI OFFICE
Lotus Towers 2A, Community Centre
New Friends Colony
New Delhi 110 065, India
Tel 91-11-5132-8035
Fax 91-11-5132-8035

SHANGHAI OFFICE
City Center of Shanghai,
Room 2002, 100 Zunyi Road,
Changning District,
Shanghai 200051, China
Tel 86-21-6237-2465-6
Fax 86-21-6237-2487

TAIPEI OFFICE
51 Keelung Road, Room 704
Section 2, Taipei, Taiwan,
R.O.C.
Tel 886-2-2739-2255(ARS)
Fax 886-2-2739-2266

Frankfurt Office
Arabella Center, 9th Floor
Lyoner Strasse 44-48
Frankfurt am Main 60528,
Germany
Tel 49-69-69-5004-0
Fax 49-69-69-5004-10

Abu Dhabi Office
P.O. Box 27767
Al Naith Tower, Suite 508
Hamdan Street, Abu Dhabi,
U.A.E.
Tel 971-2-627-6273
Fax 971-2-627-6274

Dubai Office
P.O. Box 11859
Al Serkal Building, Office No. 308
Airport Road, Dubai, U.A.E.
Tel 971-4-294-532
Fax 971-4-294-5215

Kuwait Office
Villa 15, Street 24, Block 4
Salah Al-Salem Area, Kuwait
Tel 965-551-8436
Fax 965-551-8435

Riyadi Office
P.O. Box 9656
Riyadh 11633, Saudi Arabia
Tel 966-1-419-1920, 1696
Fax 966-1-419-1995

Tripoli Office
P.O. Box No. 7780
Tripoli, Libya
Tel 218-21-360-8451
Fax 218-21-360-8451

DOOSAN WATER R&D CENTER
Gold & Diamond Park
P.O. Box 282350, Dubai, U.A.E.
Fax 971-4-347-7139
Tel 971-4-347-7142

Overseas Subsidiaries

DOOSAN BABCOCK ENERGY LTED.
11 The Boulevard, Cranley
West Sussex, RH10 1UX, U.K.
Tel 44-1293-612-888
Fax 44-1293-584-816

DOOSAN HYDRO TECHNOLOGY INC.
9120 Red Lane Tampa, FL 36119,
U.S.A.
Tel 1-813-549-0182
Fax 1-813-549-0183

DOOSAN HF CONTROLS CORP.
1624 West Crosby Road, Suite 124
Carrollton, TX 75010, U.S.A.
Tel 1-469-568-6526, 6557
Fax 1-469-568-6589

DOOSAN IMGB
104 Berceni Road Bucharest 4, Romania
Tel 40-21-301-2602
Fax 40-21-301-2703

DOOSAN BABCOCK ENGINEERING &
SERVICES INDIA PVT. LTD.
DLF Building No. 8, 3rd floor
DLF Cyber City Phase II
Gurgaon 122 002, Haryana, India
Tel 91-124-439-8200
Fax 91-124-414-7006

DOOSAN PROJECTS INDIA PVT. LTD.
322 Solitaire Corporate Park, Chakala
Andheri Kurla Road, Andheri (East)
Mumbai 400 093, India
Tel 91-22-4097-0500
Fax 91-22-4097-0599

DOOSAN HEAVY INDUSTRIES
VIETNAM CO., LTD. [DOOSAN VINA]
No. 1 An Duong Vuong Street
Quangngai City, Quangngai Province
Vietnam
Tel 84-55-513-001–7
Fax 84-55-513-008

HAN-VIET HEAVY INDUSTRY &
CONSTRUCTION CORP. [HANVICO]
933 Tor Duc Thang Street
Hong Bang District, Hai Phong,
Vietnam
Tel 84-31-371-2720
Fax 84-31-712-714–5

CEYLON HEAVY INDUSTRIES &
CONSTRUCTION CO., LTD. [CHICO]
Oxirala Ahungurika, Sri Lanka
Tel 94-11-440011–2
Fax 94-11-440010–9

HANJUNG POWER LTD.
P.O. Box 2803, Boksra, NCD
Port Moresby, Papua New Guinea
Tel 675-320-0529
Fax 675-321-2984